MathExcel Supplemental Problems E: Using Derivative Rules

1. Find the following derivatives and simplify your answer. $y^{(n)}=f^{(n)}(x)$ denotes the $n^{\text {th }}$ derivative of $y=f(x)$.
(a) $y^{(4)}, y=e^{x} \cos x$.
(b) $g^{\prime \prime}(0), g(s)=\frac{e^{s}}{s+1}$.
(c) $y^{\prime}, y=\frac{\sin x-x \cos x}{\cos x+x \sin x}$.
(d) $y^{\prime}, y=\tan x-\cot x$
(e) $f^{\prime}(x) \cdot f(x)=\left(1+\cot ^{5}\left(x^{4}+1\right)\right)^{9}$.
(f) $h^{\prime}(x), h(x)=e^{e^{e^{x}}}$.
2. The power, P, that a battery supplies to a device depends on the internal resistance of the battery. For a battery of voltage V and an internal resistance r, the total power delivered to a device with resistance R is give by the formula

$$
P=\frac{V^{2} R}{(R+r)^{2}}
$$

Assuming that V and R are constants, determine $\frac{d P}{d r}$.
3. If $y=f(u)$ and $u=g(x)$, where f and g are twice differentiable functions, show that

$$
\frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d u^{2}}\left(\frac{d u}{d x}\right)^{2}+\frac{d y}{d u} \frac{d^{2} u}{d x^{2}}
$$

4. (a) Write $|x|=\sqrt{x^{2}}$ and use the chain rule to show that

$$
\frac{d}{d x}|x|=\frac{x}{|x|}
$$

(b) If $f(x)=|\sin x|$, find $f^{\prime}(x)$ and sketch the graphs of f and f^{\prime}. Where is f not differentiable?
(c) If $g(x)=\sin |x|$, find $g^{\prime}(x)$ and sketch the graphs of g and g^{\prime}. Where is g not differentiable?
5. Consider the parabola $y=x^{2}+1$. How many different tangent lines to this graph would cross through a point (a, b) given the following conditions on a and b ? Draw the graph and the tangent line(s) for each case.
(a) $b<a^{2}+1$
(b) $b=a^{2}+1$
(c) $b>a^{2}+1$
6. Find all values of n and x such that $y=x^{n}$ satisfies $x^{2} y^{\prime \prime}-2 x y^{\prime}=4 y$.
7. If f is a differentiable function that satisfies $\cos (f(x))=x$, use the chain rule to show that $f^{\prime}(x)=\frac{-1}{\sqrt{1-x^{2}}}$. (Hint: take the derivative of both sides of the first equation with respect to x. It may also be helpful to draw a certain triangle.)
8. Find a quadratic function $p(x)$ such that $p(2)=3, p^{\prime}(1)=14$, and $p^{\prime \prime}(10)=4$.
9. At time t seconds, the center of a bobbing cork is $3 \sin 2 t$ centimeters above (or below) water level. What is the velocity of the cork at $t=0, \frac{\pi}{2}, \pi$?
10. Find constants A and B such that the function $y=A \sin x+B \cos x$ satisfies the differential equation $y^{\prime \prime}+y^{\prime}-2 y=\sin x$.
11. Assume that f, g and w are differentiable functions. It can be shown that if $h(x)=f(x) g(x) w(x)$, then by the product rule we have

$$
h^{\prime}(x)=f^{\prime}(x) g(x) w(x)+f(x) g^{\prime}(x) w(x)+f(x) g(x) w^{\prime}(x)
$$

(a) Use the formula above to show that

$$
\frac{d}{d x}[f(x)]^{3}=3[f(x)]^{2} f^{\prime}(x)
$$

(b) Use part (a) to differentiate $y=e^{3 x}$.

